





## AEMET-YSREPS

### Convection-permitting LAM-EPS at Spanish Met Agency

COASTEPS 2019

**AEMET**  $\gamma$ **SREPS Predictability Group** 

Alfons Callado, Pau Escribà, David Quintero, Mauri Martínez Maria Rosa Pons (EPSgrams collaboration), David Gil (WEB collaboration) Carlos Santos (consultant), José Antonio García-Moya (retired)

**MÉTÉOFrance** 

François Bouttier (AROME-EPS verification collaboration)

#### **Overview**



- Who are we? AEMET predictability group
- What is AEMET-γSREPS?
  - And why is multi-boundary multi-NWP LAM-EPS ?
- Designing AEMET-γSREPS
- A taste of verification:
  - Objective and subjective
- γSREPS in operations phase test:
  - Running and forecasters web page
- Foreseeable developments

### Who are we?

#### AEMET-ySREPS Predictability group

- Since 2002 an small core group working on Limited Area (LAM) Ensemble Prediction Systems (EPS) depending on Research Department
- Members of HIRLAM-HarmonEPS and involved in several projects: EUMETNET SRNWP EPS 2019-2023, PreFlexMS, COASTEPS, etc., and collaborations on EPSs with IPMA-AEMET, AROME-EPS MétéoFrance, ALARO people, etc.



David Gil (collaboration) web page



## What is AEMETySREPS?

- S R
  AEMET
  S
- 20-members non-hydrostatic convection-permitting LAM-EPS
- Since April 2016 daily running at 00/12 UTC up to 48 hours (2018)
- 3 DOMAINS: IBERIA\_2.5, CANARIAS\_2.5 and LIVINGSTON\_2.5 (Antarctica)



- S R
  AEMET S
- 20-members non-hydrostatic convection-permitting LAM-EPS
- Since April 2016 daily running at 00/12 UTC up to 48 hours (2018)
- 3 DOMAINS: IBERIA\_2.5, CANARIAS\_2.5 and LIVINGSTON\_2.5 (Antarctica)



- S R
  AEMET S
- 20-members non-hydrostatic convection-permitting LAM-EPS
- Since April 2016 daily running at 00/12 UTC up to 48 hours (2018)
- 3 DOMAINS: IBERIA\_2.5, CANARIAS\_2.5 and LIVINGSTON\_2.5 (Antarctica)



#### **AEMET-**γ**SREPS** system

- S R
  AEMET
  S
- 20-members non-hydrostatic convection-permitting LAM-EPS
- Since April 2016 daily running at 00/12 UTC up to 48 hours (2018)
- 3 DOMAINS: IBERIA\_2.5, CANARIAS\_2.5 and LIVINGSTON\_2.5 (Antarctica)



#### AEMET-YSREPS

- Developing a convection-permitting LAM-EPS
  - 3 sources of uncertainties

#### 1 INITIAL CONDITIONS

2 BOUNDARY CONDITIONS

~Synoptic uncertainty







**Initial conditions and Multi-BCs** 

**ECMWF** – IFS

NCEP - GFS

**MétéoFrance** – ARPÈGE

**CMC** – GEM (Canadian)

JMA - GSM (Japanese)





3 MODEL ERROR

~Mesoscale uncertainty

**Multi-model** 

HARMONIE-AROME HARMONIE-ALARO WRF-ARW (NCAR) NMMB (NCEP)



#### AEMET-YSREPS

Initial conditions

H+04 n-member ensemble

2-hour assimilation window

- Developing a convection-permitting LAM-EPS
  - 3 sources of uncertainties



INITIAL CONDITIONS

CONDITIONS

CONDITIONS

CONDITIONS

CONDITIONS

Condition

3 MODEL ERROR

~Mesoscale uncertainty



**Multi-model** 

HARMONIE-AROME HARMONIE-ALARO WRF-ARW (NCAR) NMMB (NCEP)

# Why is AEMET-ySREPS multi-boundaries and multi-model?

#### **Multi-boundaries** and **multi-model ySREPS**

- Why ?
  - Because it holds the better LAM-EPS we can offer to our forecasters especially for convection uncertainty
    - Better spread-skill relationship









#### **Multi-boundaries** and **multi-model** ySREPS

- Why ?
  - Because it holds the better LAM-EPS we can offer to our forecasters especially for convection uncertainty
    - Better spread-skill relationship









## Designing AEMET-ySREPS

## Summary of models in ySREPS: 4 NWP MODELS

| NWP models' settings                                                                 |                                                                                                                                        |                                                                                |  |  |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| HARMONIEs                                                                            | WRF-ARW                                                                                                                                | NMMB                                                                           |  |  |  |  |  |
| AROME physics ALARO physics 65 Hybrid sigma- pressure vertical levels 60 S time step | ARW dynamical core 66 72 sigma (ETA) hydrostatic-pressure levels UP to 40 hPa [where it is 64 HARMONIE vertical level] 12 \$ time step | NMM dynamical core 66 72 Hybrid sigma- pressure up to 40 hPa 5.625 S time step |  |  |  |  |  |
| Lambert Conformal (<br>/ lat 40<br>565 * 469                                         | Rotated Ion-lat B-grid: Ion -2.5° / lat 40.0° centre 568 * 472 grid-points                                                             |                                                                                |  |  |  |  |  |
| Calling radiation every 15 minutes                                                   |                                                                                                                                        |                                                                                |  |  |  |  |  |

8 LBC relaxation points around grid area



It has been intended to integrate both NWP models with the closer possible settings in order to be the comparison the more fairly possible.

### Summary of models in pSREPS: 4 NWP MODELS





It has been intended to integrate both NWP models with the closer possible settings in order to be the comparison the more fairly possible.

## Summary of models in γSREPS: 4 NWP MODELS





It has been intended to integrate both NWP models with the closer possible settings in order to be the comparison the more fairly possible.

## A taste of verification

The most recent verifications

#### OBJECTIVE

#### VSREPS Versus ECMWF EPS



 Recent result for a coming paper about HarmonEPS system: review of HIRLAM EPSs. Comparison of 12AccPcp for 00 and 12 cycles of November 2018



γ**SREPS** 

ECMWF EPS





- MétéoFrance collaboration:
  - Recent results for AROME EPS (MétéoFrance) and γSREPS (AEMET) intercomparison verification

Thanks to François Bouttier verification



#### Common area

#### Two periods:

- > 1st 31st May 2018 (quite rainy month)
- ➤ 8<sup>th</sup> 16<sup>th</sup> October 2018 (Leslie time, very convective period)

## High resolution LAM-EPS on Europe



|                                         | NWP                                 | Resolution /<br>Area /<br>Range            | N.<br>MBR | ICs<br>Assimilation                                   | LBC<br>conditions                             | Model<br>error                           |
|-----------------------------------------|-------------------------------------|--------------------------------------------|-----------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------|
| AEMET-<br>γSREPS                        | AROME +<br>ALARO +<br>WRF +<br>NMMB | 2,5 km × 65/72<br>~1400×1200 km<br>HH+48   | 20        | 5 Global NWP<br>¿LETKF?<br>¿3DVAR EDA?                | 5 Global NWP                                  | Multi-model<br>¿+SPPT?                   |
| MetCoOp EPS<br>MEPS                     | HARMONIE-<br>AROME                  | 2,5 km x 64 lev<br>~1900x2400 km<br>HH+36  | 10        | NMC → 3DVAR<br>control<br>Surf.Ass. All<br>members    | SLAF from ECMWF-<br>IFS deterministic<br>9 km | ¿Surf.Perturb.?<br>¿SPPT?                |
| AROME-EPS<br>MétéoFrance                | AROME                               | 2,5 km x 90 levs<br>~1900-2000km<br>HH+45  | 12        | 3DVAR EDA                                             | PEARP (cluster)<br>10 km                      | SPPT<br>+Surf.Perturb.                   |
| COSMO-DE-<br>EPS<br>DWD                 | COSMO                               | 2,8 km<br>~1200x1300 km<br>HH+27<br>HH+45  | 20        | KENDA (LETKF)<br>+ Sto.Pert.<br>SoilMoisture +<br>SST | ICON-EPS<br>20 km                             | Multi-parameter<br>(fixed)               |
| COSMO-E<br>METEOSWISS<br>(COSMO-IT-EPS) | COSMO                               | 2,2 Km x 60 lev<br>~1300x850 km<br>HH+120  | 21        | KENDA (LETKF)<br>40 mbr.                              | ECMWF-EPS<br>18 km                            | SPPT                                     |
| MOGREPS UK                              | UM                                  | 2,2 km x 70 levs<br>~1600-1650 km<br>HH+54 | 12        | UKV analysis                                          | MOGREPS-G                                     | RP<br>Stochastic<br>multi-<br>parameters |

## High resolution LAM-EPS on Europe



|                                          | NWP                                 | Resolution /<br>Area /<br>Range           | N.<br>MBR | ICs<br>Assimilation                                | LBC<br>conditions                             | Model<br>error                           |  |
|------------------------------------------|-------------------------------------|-------------------------------------------|-----------|----------------------------------------------------|-----------------------------------------------|------------------------------------------|--|
| AEMET-<br>γSREPS                         | AROME +<br>ALARO +<br>WRF +<br>NMMB | 2,5 km x 65/72<br>~1400x1200 km<br>HH+48  | 20        | 5 Global NWP<br>¿LETKF?<br>¿3DVAR EDA?             | 5 Global NWP                                  | Multi-model<br>¿+SPPT?                   |  |
| MetCoOp EPS<br>MEPS                      | HARMONIE-<br>AROME                  | 2,5 km x 64 lev<br>~1900x2400 km<br>HH+36 | 10        | NMC → 3DVAR<br>control<br>Surf.Ass. All<br>members | SLAF from ECMWF-<br>IFS deterministic<br>9 km | ¿Surf.Perturb.?<br>¿SPPT?                |  |
| AROME-EPS<br>MétéoFrance                 | AROME                               | 2,5 km x 90 levs<br>~1900-2000km<br>HH+45 | 12        | 3DVAR EDA                                          | PEARP (cluster)<br>10 km                      | SPPT<br>+Surf.Perturb.                   |  |
| COSMO-DE-<br>EPS<br>DWD                  | соѕмо                               | 2,8 km<br>~1200x130f<br>HH+27             | 20        | KENDA (I ')<br>+ Sto                               | ICON-EPS<br>20 km                             | Multi-parameter<br>(fixed)               |  |
| COSMO-E Quite different LAM-EPS          |                                     |                                           |           |                                                    |                                               |                                          |  |
| METEOSWISS → More difficult to interpret |                                     |                                           |           |                                                    |                                               |                                          |  |
| (cosmo-it-eps) verification results      |                                     |                                           |           |                                                    |                                               |                                          |  |
| MOGREPS UK                               | UM                                  | HH+54                                     |           |                                                    | G                                             | RP<br>Stochastic<br>multi-<br>parameters |  |

T<sub>2</sub>m

Bias / em RMSE / member RMSE

Thanks to **François Bouttier** verification

> What is the role of the number of members?

**AROME-EPS** 

**γSREPS** 

> 1st - 31st May 2018











1st hours AROME-EPS > ySREPS

Later AROME-EPS ≈ ySREPS

T2m

Expected AROME-EPS

with a assimilation to
be better during 1st

hours than γSREPS

Thanks to
François Bouttier
verification

What is the role of the number of members?

6<sup>th</sup> October 2018





1st hours AROME-EPS > ySREPS

forecast range (h)

Later AROME-EPS ≈ ySREPS

T2m

Spread / Skill + ratio

Thanks to François Bouttier verification

**AROME-EPS** 

**ySREPS** 

γSREPS 12 members

> 1<sup>st</sup> - 31<sup>st</sup> May 2018



**>** 8<sup>th</sup> − 16<sup>th</sup> October 2018



Spread ySREPS > AROME-EPS

But ¿ySREPS >< AROME-EPS?

T2m

Spread / Skill + ratio

Thanks to François Bouttier verification

**AROME-EPS** 

> 1st - 31st May 2018

Take into account that spread + errobs > classical spread





T2m CRPS score

Thanks to François Bouttier verification

**AROME-EPS** 

**ySREPS** 

**ySREPS 12 members** 

> 1<sup>st</sup> - 31<sup>st</sup> May 2018



≽ 8<sup>th</sup> − 16<sup>th</sup> October 2018



May ySREPS > AROME-EPS

October ySREPS ≈ AROME-EPS

**T2m > 13°C** ROC area

Thanks to **François Bouttier** verification

**AROME-EPS** 

REPS 12 members

> 1st - 31st May 2018



≽ 8<sup>th</sup> − 16<sup>th</sup> October 2018



RH2m CRPS score

Thanks to François Bouttier verification

**AROME-EPS** 

**ySREPS** 

**ySREPS 12 members** 

> 1<sup>st</sup> - 31<sup>st</sup> May 2018



**>** 8<sup>th</sup> − 16<sup>th</sup> October 2018



May ySREPS > AROME-EPS

October ySREPS ≈ AROME-EPS

**U10m** CRPS score

Thanks to François Bouttier verification

**AROME-EPS** 

**γSREPS** 

**ySREPS 12 members** 

> 1<sup>st</sup> - 31<sup>st</sup> May 2018



≥ 8<sup>th</sup> - 16<sup>th</sup> October 2018



U10m > 20km/h ROC area

Thanks to François Bouttier verification

**AROME-EPS** 

**γSREPS** 

ySREPS 12 members

> 1<sup>st</sup> - 31<sup>st</sup> May 2018



**>** 8<sup>th</sup> − 16<sup>th</sup> October 2018



AccPcp 3h CRPS score

Thanks to François Bouttier verification

**AROME-EPS** 

**ySREPS** 

**ySREPS 12 members** 

> 1st - 31st May 2018



**>** 8<sup>th</sup> − 16<sup>th</sup> October 2018



May γSREPS > ≈ AROME-EPS

October ySREPS ≈ AROME-

AccPcp > 6mm/3h ROC area

Thanks to François Bouttier verification

**AROME-EPS** 

**γSREPS** 

ySREPS 12 members

> 1<sup>st</sup> - 31<sup>st</sup> May 2018



≥ 8<sup>th</sup> - 16<sup>th</sup> October 2018



May γSREPS > ≈ AROME-EPS

October ySREPS ≈< AROME-

AccPcp > 6mm/3h Reliability

Thanks to François Bouttier verification

**AROME-EPS** 

**PS 12 members** 

1<sup>st</sup> - 31<sup>st</sup> May 2018







S > ≈ AROME-EPS

October ySREPS ≈ AROME-EPS

Thanks to François Bouttier verification

AccPcp > 6mm/3h Economic value

**AROME-EPS** 

**ySREPS** 

**ySREPS 12 members** 

> 1<sup>st</sup> - 31<sup>st</sup> May 2018

0.0

0.2



**>** 8<sup>th</sup> − 16<sup>th</sup> October 2018



0.4

0.6

alpha=Cost/Loss

0.8

1.0

## Verification results from the point of view of $\gamma$ SREPS

- We have a good LAM-EPS in the current state of art of LAM-EPS, but with room to improve
- We penalise the 1<sup>st</sup> hours because we have not assimilation, but no so much
- We would like to have a little better results on the very convective and uncertain period of October → organised convection and high precipitation events are our goals

## MétéoFrance AROME-EPS and AEMET- $\gamma$ SREPS future intercomparison

- Longer periods to verify: 3-months
  - Better for high thresholds
- More parameters
- Bigger domain for  $\gamma$ SREPS in 2020  $\rightarrow$  Bigger common area



In what forecasters are more interested !!!

SUBJECTMA

## Qualitative verification results



## **Maresme**











## case study: low predictability









AEMET-ySREPS













## case study: low predictability









**AEMET-**ySREPS













## case study: low predictability

http://meteo.uib.eu/coasteps/







**AEMET-**ySREPS













## case study: *low predictability*









**AEMET-**ySREPS

#### **Maresme** case study: low predictability



DE CIENCIA, INNOVACIÓN







http://meteo.uib.eu/coasteps/







**AEMET-**ySREPS

## γSREPS nearly operational

# TEST PHASE AT AEMET FORECASTING OFFICES

#### **YSREPS at ECMWF** cray XC40

S R
AEMet
S

- EcFlow suite management
- 00 and 12 UTC cycle over IBERIA\_2.5 domain



#### yskeps torecasters' web

## site

- Available for AEMET forecasting offices since November 2018
- Period test before fully operational until 30<sup>th</sup> September
- Around 40 products with more than 3500 plots



## Forecasters ask and collaborate in new EPS products



 "spaguetti plot" with all members → Looking for spatial uncertainty



## Forecasters ask and collaborate in new EPS products



 "spaguetti plot" with all members → Looking for spatial uncertainty

Maximum precipitation and wind gust (IPMA) → They look for the worst scenario

+ into a radius



6°W

5°W

4°W

Oriol Ripoll

#### Guide of Web AEMETySREPS products



Productos web AEMET-ySREPS

Versión: 1.3 Página 1 de 31

#### PRODUCTOS WEB AEMET-YSREPS



Grupo de Predecibilidad-ySREPS

Versión 1.3 Enero 2019

| Autores                                                                                                 | Fecha      | Fase                                                                 | Versión           |
|---------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|-------------------|
| Alfons Callado Pallarès<br>Fco. Javier Rodríguez Marcos (revisión)<br>María Rosa Pons Reynés (revisión) | 2018/11/20 | Pre-operativa<br>hasta 31 Marzo 2019                                 | 1.3<br>2019/01/09 |
| Grupo de<br>Predecibilidad-ySREPS                                                                       |            | Pallarès, Pau Escribà Ayerbe, Mau<br>vid Quintero Plaza, Marc Compte |                   |
| Colaboradores del Grupo<br>de Predecibilidad-ySREPS                                                     |            | Antonio García-Moya Zapata, Davios Santos Burguete, María Rosa Po    |                   |

| Características generales γSREPS y productos |                                                                                                          |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Concepto                                     | Valor / Comentario                                                                                       |  |  |
| Tipo EPS                                     | Multi-modelo multi-condiciones de contomo                                                                |  |  |
|                                              | No hidrostático y convection-permitting                                                                  |  |  |
|                                              | Resolución horizontal de 2,5 km y vertical de 65/72 capas                                                |  |  |
| Salidas: frecuencia/alcance                  | Cada 3 horas hasta 48                                                                                    |  |  |
| Dominio → Áreas                              | IBERIA_2.5 → IBERIA_2.5 y IBERIA_EAST                                                                    |  |  |
|                                              | CANARIAS_2.5 → CANARIAS_2.5 y CANARIAS_ISLANDS<br>LIVINGSTON 2.5 → LIVINGSTON 2.5 y LIVINGSTON ISLANDS   |  |  |
| Disponibilidad                               | En IP: http://172.24.139.34:4000/                                                                        |  |  |
| Divulgación/Comunicación                     | Área de Predicción Operativa: frodrigue zm@aemet.es                                                      |  |  |
| Divargacion/Contamencion                     |                                                                                                          |  |  |
|                                              | Ejemplo WEB (descripción en rojo)                                                                        |  |  |
| Atajos del Clouds I AccPcp                   | Zongo Zongo Zong (Alto Avez personal alfatist) Pasida Zong MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN  |  |  |
| Atajos del Clouds I                          | MEAN gSREPS_AIB NMBRS=20 - Nt de miembros disponibles DATE=20190107 12 FCT=36 para el citodo (miximo 20) |  |  |
| tagins dal taclada Clouds I AccPcp           | MEAN 958117-1 AII NUBBS-2-0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                        |  |  |
| Angue del tudido AccPcp                      | MEAN 9581F3 All HABBS-20 C T T T T T T T T T T T T T T T T T T                                           |  |  |

## Web AEMET-ySREPS products' suggestions sheet



Expecting forecasters feedback about better web page and new/better products !!!



#### AEMET-ySREPS subjective validation sheet





# ysreps current and future developments



#### **ySREPS** developments:



- Assimilation (LETKF ) 3DVAR EDA ? [→ Pau]
  - GNSS+RADAR assimilation [⇔ Jana Sánchez]



- 25 members 

  Including the 5th mesoscale convection-permitting NWP model: 

  ¿Canadian GEM-LAM? [→ Alfons]
- Additional 15' stream output for high socialeconomic variables' impact as T2m and UV10m



• ySREPS IBERIA CANARIAS LIVINGSTON 00 UTC at ECMWE systems:

- Time critical application evel 2 [→ Alfons + Pau]

  [BERIAXXM\_2.5 bigger domain (~better organized convection)
  - Up to 72 hours for end-users
    - ⇔ More HPCF resources → 2020 Bologna
      - **→** 2021 AEMET
    - ⇔ NWP in 32 bits opportunity (>40%)

γSREPS CANARIAS\_2.5 12 UTC at AEMET systems (BULL-ATOS):

- Currently under implementation [→ Alfons + David Q.]
- ¿ "explotación" future management ? [⇔ *Sergio Cotera*]



- **ySREPS** cyclones tracking [Maria Angels Picornell]:
  - Case study **20170119** 00UTC [→ Alfons]
  - **IBERIAXI 2.5** domain
    - Some problems with WRF and big domains not solved still



Western

Mediterranean

Basin





- Moving from pressure levels ARPÈGE BCs
   [MFPL] to model levels [MFML]
  - Waiting for T2m, RH2m and U/V10m [MF-IPMA] [→
     Thanks to Maria Monteiro / Claude Fisher]
- WRF-ARW update from 3.6.0 to 4.\* version [David Q.]
  - From sigma vertical levels to hybrid ones
- HARMONIEs updates: AROME and ALARO [Pau]
  - HARMONIE version 40h111 ⇔ cy40t1bf7 ALARO
  - **Better ALARO implementation** [→ Thanks to Neva Pristov]
  - Possible contribution → Multi-physics again into HarmonEPS



- BCs and NWP sub-ensembles verification
- Deterministic verification for each member







- γSREPS user "products" developments:
  - Probabilistic forecast products:
    - Forecasters WEB page [⇔ David G.]
      - With one click:
        - EPSgrams
        - Probabilistic vertical profiles [ATAP, Álvaro Subías]
        - Probabilistic cross-sections
      - Case studies web tab
    - PANEL integration [⇔ ATAP Marcos G.]
  - Specific socio-economic impact products:
    - AEROgrams ENAIRE [ Mariona Pons & Alejandro Méndez]
      - ¿ Wind shear products?
    - AIRPORTS fog/mist/visibility [⇔ Sergio Fernández / SRNWP-EPS]
    - Wind/solar renewable energy sector (e.g. PreFlexMS):
      - E.g. probabilistic solar GHI + DNI for REE [¿→ Mauri?]
    - Calibrated T2m/W10m/AccPcp for cities/villages [⇔ SRNWP-EPS]







ents:

*lléndez* 

/ SRNWP-EPS] FlexMS): *auri* ?] [⇔ SRNWP-EPS]





#### Thank you for your attention !!!

acalladop@aemet.es mmartinezs@aemet.es pescribaa@aemet.es

Any question will be welcome

**COASTEPS 2019** 

Alfons Callado, Pau Escribà, David Quintero, Mauri Martínez

Maria Rosa Pons (EPSgrams collaboration), David Gil (WEB collaboration) Carlos Santos (consultant), José Antonio García-Moya (retired) **MÉTÉOFrance** 

François Bouttier (AROME-EPS verification collaboration)