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Introduction

 Two sources of uncertainty in weather prediction: initial state and
physical processes

* The mathematical framework to model uncertainty is probability
theory

* Uncertainty is modelled through random variables described by
PDFs. For multidimensional systems: multidimensional PDFs,
representable over phase space



Introduction

* Most characteristics of atmospheric PDFs are_IargeIfy unknown. Certain
topologies would challenge common interpretations of EPS.

Penrose, 1989

* The perfect-model evolution of a system described by a state vector of
random variables fulfils the Liouville equation



Objectives

* The purpose of this work is to explore some basic characteristics of
simple solutions of the Liouville equation for low complexity systems

* Topological characteristics of the solutions will be analysed in detail
 Test the potential of LBVs to more efficiently initialize mesoscale EPS

* Investigate options to increase ensemble diversity and obtain a
seamless scale representation compared to traditional BV



PART I: Liouville equation



General solution of the Liouville equation

* Liouville equation for the probability density function p given a
dynamical system x - &(x) :

* If the method of characteristics can be used in the problem at stake,
then the general solution is:

p(X,t) = po(a)efﬂp( — /Ot X(X (e, ), t’)dt’)

a is the state vectoratt=0



Application to a Low dimensional barotropic
model

* From barotropic vorticity equation under beta-plane approximation is:
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« A solution consisting in a highly truncated Fourier series expansion for V21 with
three time dependent amplitudes (X;, X, and X3) and phase angles linearly
dependent on time (6, and 83) is proposed (Peagle and Robl, 1977):

V2 = X1 (t)cos(ly) + Xo(t)cos(kx + 0y) + 2X5(t)sin(kx + 03)sin(ly)
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Analytical solution of the system

X, = Xdn(ht + ¢, k§)
Xy = X5sn(ht + ¢, ki)

X3 = X en(ht + ¢, k)

sin(vt)
Y

dn, sn and cn are the Jacobi elliptic functions
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Analytical solution of the system
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Analytical solution of the system
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Analytical solution of the system
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Analytical solution of the system
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Analytical solution of the system
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Analytical solution of the system

/\A X, = 0.12
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X30=0.10
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B=0




t

p(X.1) = pole)eap( / V(X (e, t). )t

Solution of the Liouville equation

* Applying the general solution to the system obtained from the
barotropic model yields:

/O(le X27 X37 t) — pO(X10(X17 X27 X37 t)? X2O(X17 X27 X37 t)) X30(X17 X27 X37 t))
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Solution of the Liouville equation

* The initial p is defined here as a three dimensional Gaussian
distribution:

(X10 — p1)? L (o — 19)? | (K — Mg)g)}

X10, Xoo, Xso) = k [—(
po(X10, X20, X30) exp 5052 952 5052

k: normalization constant
U 2 means in each direction
o: standard deviation

e 1;=0.12, 4, =0.24, u;=0.1, g = 0.01

16



Evoloution of p, (¢ =2, § =0)

X! - e




Evoloution of p, (¢ =2, § =0)




Evoloution of p, (¢ =2, § =0)
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Evoloution of p, (a =2, f =0)
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Evoloution of p, (¢ =2, § =0)
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Evoloution of p, (¢ =2, § =0)
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Numerical solution of the Liouville equation
for a barotropic model

* Solution of the Liouville equation for a full barotropic model in a
91x51 grid with a brute-force approach

» Total number of model integrations Np"? 0(107900)

* Principal Component Analysis is applied to reduce system
dimensionality using ECMWF analysis data

* 5 PC are kept
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Numerical solution of the Liouville equation
for a barotropic model
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Numerical solution of the Liouville equation
for a barotropic model

* New phase space is 5-dimensional (5 PC retained)
* |t is discretised in Np = 75 points in each dimension
* Initial PDF is a gaussian distribution

* Mean is obtained from the ERA5 500 hPa geopotential on 7t
November 2014

* Liouville equation is solved with a lead time of 24h
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Numerical solution of the Liouville equation
for a barotropic model

* Initial conditions
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Part | conclusions

* The Liouville equation has been solved analytically for a low complexity
system

 The granularity of the analytical solution for certain values of the
parameters reveals a serious predictability challenge

* A granular solution is also identified in a more realistic model

* These results challenge most current ensemble prediction products that
are based on compact PDF



PART II: Tailored Bred Vectors



Motivation and objectives

* One of the main problems of EPS is the underdispersion
* Extreme events may not be represented

* In order to improve the high resolution short-range forecast of
extreme events, ensemble spread must be controlled (typically
increased)
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New perturbation method:
Tailored Bred vectors

* This method enables to increase the ensemble size at no bred generation
cost

* Allows a seamless scale representation unlinking scales of forecast interest
from bred generation strategy (and so recycling period)

* BVTEP are generated by combining different BV with different scales and
amplitudes:

1/Bi
P = z _ Vi5xi i: 1,..n breds
i
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Ensemble configurations
 CNTL: 5 ABV perturbations (1 bred per perturbation)

e LOG: 5 LBV perturbations (1 bred per perturbation)
 BVTEP1B: 5 ABV (1 w-rescaled bred per perturbation)

« BVTEP5B: 5 ABV (Linear combination of up to 5 w-rescaled bred per
perturbation)
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Results

Variation of ensemble dimension with lead times for T at a model level
close to 850 hPa
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Part Il conclusions

* The ensemble diversity is similar for forecasts perturbed with
arithmetic and logarithmic rescaled bred vectors

* Modifying the scale of the initial perturbations increases ensemble
diversity and skill

* Puzzling result: better skill from particular case of general method...

* The methodology should be tested in a severe weather event
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ENSEMBLE DIMENSION

* Ensemble dimension is computed from the eigenvalues u; of the
covariance C;; matrix of a set of states:

* Perturbations covariance matrix:

(b® b))
U L@, pD|,

(b(i), b(J')) = Y pW (x)b(j) (x)

* Ensemble dimension

_ (Ehvm)

D

D quantifies the number of independent vectors in the set (ensemble). 4



