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Introduction
• Two sources of uncertainty in weather prediction: initial state and
physical processes

• The mathematical framework to model uncertainty is probability
theory

• Uncertainty is modelled through random variables described by
PDFs. For multidimensional systems: multidimensional PDFs,
representable over phase space
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Introduction
• Most characteristics of atmospheric PDFs are largely unknown. Certain

topologies would challenge common interpretations of EPS.

• The perfect-model evolution of a system described by a state vector of
random variables fulfils the Liouville equation

Penrose, 1989
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Objectives
• The purpose of this work is to explore some basic characteristics of
simple solutions of the Liouville equation for low complexity systems

• Topological characteristics of the solutions will be analysed in detail

• Test the potential of LBVs to more efficiently initialize mesoscale EPS

• Investigate options to increase ensemble diversity and obtain a
seamless scale representation compared to traditional BV
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PART I: Liouville equation
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General solution of the Liouville equation

• Liouville equation for the probability density function ! given a
dynamical system :

• If the method of characteristics can be used in the problem at stake,
then the general solution is:

∂ρ(X, t)

∂t
+

N∑
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" is the state vector at t = 0 
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Application to a Low dimensional barotropic
model

• From barotropic vorticity equation under beta-plane approximation is:

• A solution consisting in a highly truncated Fourier series expansion for !"# with
three time dependent amplitudes (X1, X2 and X3) and phase angles linearly
dependent on time ($" and $%) is proposed (Peagle and Robl, 1977):
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∇
2ψ = X1(t)cos(ly) +X2(t)cos(kx+ θ2) + 2X3(t)sin(kx+ θ3)sin(ly)



Analytical solution of the system

X1 = X∗

1dn(hτ + φ, k2

0)

X2 = X∗

2sn(hτ + φ, k2

0)

X3 = X∗

3cn(hτ + φ, k2

0)

τ =
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γ

dn, sn and cn are the Jacobi elliptic functions
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Analytical solution of the system

X10 = 0.12
X20 = 0.24
X30 = 0.10
! = 2
" = 0
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Solution of the Liouville equation

• Applying the general solution to the system obtained from the
barotropic model yields:

ρ(X1, X2, X3, t) = ρ0(X10(X1, X2, X3, t), X20(X1, X2, X3, t), X30(X1, X2, X3, t))
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ρ(X, t) = ρ0(α)exp
(

−

∫

t

0

χ(X(α, t′), t′)dt′
)



Solution of the Liouville equation
• The initial ! is defined here as a three dimensional Gaussian
distribution:

• "1 = 0.12, "2 = 0.24, "3 = 0.1, # = 0.01

ρ0(X10, X20, X30) = k exp
[

−

((X10 − µ1)2

2σ2
+
(X20 − µ2)2

2σ2
+
(X30 − µ3)2

2σ2

)]

k: normalization constant
" $: means in each direction
#: standard deviation
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Evoloution of !1 (" = 2, # = 0)

t = 0
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α =

k
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Evoloution of !1 (" = 2, # = 0)

t = 10
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Evoloution of !1 (" = 2, # = 0)

t = 50
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Evoloution of !1 (" = 2, # = 0)

t = 100
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Evoloution of !1 (" = 2, # = 0)

t = 250
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Evoloution of !1 (" = 2, # = 0)

t = 500
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Evoloution of !1 (" = 2, # = 0)

t = 1000
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Evoloution of !1 (" = 2, # = 0)

t = 5000

Granular solution 
for long times

24



Numerical solution of the Liouville equation
for a barotropic model

• Solution of the Liouville equation for a full barotropic model in a
91x51 grid with a brute-force approach

• Total number of model integrations!"#$ %(10)***)

• Principal Component Analysis is applied to reduce system
dimensionality using ECMWF analysis data

• 5 PC are kept
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Numerical solution of the Liouville equation
for a barotropic model
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Numerical solution of the Liouville equation
for a barotropic model

• New phase space is 5-dimensional (5 PC retained)

• It is discretised in !" = 75 points in each dimension

• Initial PDF is a gaussian distribution

• Mean is obtained from the ERA5 500 hPa geopotential on 7th
November 2014

• Liouville equation is solved with a lead time of 24h
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Numerical solution of the Liouville equation
for a barotropic model

• Initial conditions
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Mean + and - 2! in X3 for  "#$%&



Results
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Part I conclusions

• The Liouville equation has been solved analytically for a low complexity
system

• The granularity of the analytical solution for certain values of the
parameters reveals a serious predictability challenge

• A granular solution is also identified in a more realistic model

• These results challenge most current ensemble prediction products that
are based on compact PDF
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PART II: Tailored Bred Vectors
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Motivation and objectives
• One of the main problems of EPS is the underdispersion

• Extreme events may not be represented

• In order to improve the high resolution short-range forecast of
extreme events, ensemble spread must be controlled (typically
increased)
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• This method enables to increase the ensemble size at no bred generation
cost

• Allows a seamless scale representation unlinking scales of forecast interest
from bred generation strategy (and so recycling period)

• BVTEP are generated by combining different BV with different scales and
amplitudes:

! =#
$
%$&'$

(/*+
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New perturbation method: 
Tailored Bred vectors

i: 1,…n breds



Ensemble configurations
• CNTL: 5 ABV perturbations (1 bred per perturbation)

• LOG: 5 LBV perturbations (1 bred per perturbation)

• BVTEP1B: 5 ABV (1 ω-rescaled bred per perturbation)

• BVTEP5B: 5 ABV (Linear combination of up to 5 ω-rescaled bred per
perturbation)
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Results
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Variation of ensemble dimension with lead times for T at a model level 
close to 850 hPa



Part II conclusions
• The ensemble diversity is similar for forecasts perturbed with
arithmetic and logarithmic rescaled bred vectors

• Modifying the scale of the initial perturbations increases ensemble
diversity and skill

• Puzzling result: better skill from particular case of general method…

• The methodology should be tested in a severe weather event
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ENSEMBLE DIMENSION
• Ensemble dimension is computed from the eigenvalues !" of the
covariance #"$ matrix of a set of states:

• Perturbations covariance matrix:

#"$ = &((),&(+)
,||&(()||.||&(+)||.

&("), &($) = ∑& " (0)& $ (0)

• Ensemble dimension

1 = ∑"234 !"
5

∑"234 !"

D quantifies the number of independent vectors in the set (ensemble). 41


