



# A TRAM-BASED Pragmatic Approach for the Numerical Prediction of METEOTSUNAMIS in CIUTADELLA Harbour (Balearic Islands)

Romu Romero M. Mar Vich C. Ramis





COASTEPS CGL2017-82868-R



EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND "A way to make Europe"

## RISSAGA Phenomenon



Jansà et al. (2007)













15 June 2006



#### Šepić et al. (2015)



### 1. ATMOSPHERIC Component (Balearic Islands)

> 2D version of Euler equations (dry-adiabatic)

$$\begin{split} \frac{\partial \pi'}{\partial t} &= -u \frac{\partial \pi'}{\partial x} - w \frac{\partial \pi'}{\partial z} - w \frac{\partial \overline{\pi}}{\partial z} - \frac{R}{c_v} (\overline{\pi} + \pi') \left[ \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} \right] \\ \frac{\partial \theta'}{\partial t} &= -u \frac{\partial \theta'}{\partial x} - w \frac{\partial \theta'}{\partial z} - w \frac{\partial \overline{\theta}}{\partial z} \\ \frac{\partial u}{\partial t} &= -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - c_p (\overline{\theta} + \theta') \frac{\partial \pi'}{\partial x} & \text{NO rotation} \\ \frac{\partial w}{\partial t} &= -u \frac{\partial w}{\partial x} - w \frac{\partial w}{\partial z} - c_p (\overline{\theta} + \theta') \frac{\partial \pi'}{\partial z} + g \frac{\theta'}{\overline{\theta}} \end{split}$$

- > Numerical implementation [CFL  $\xrightarrow{c_s > 300 \, m/s} \Delta t \approx 3 \, \Delta x \, (\Delta z)$ ]
  - \* Forward-Backward integration of "forcings" in RK2 cycle
  - \* REA (V and H) integration of advection every 6-10 Nsteps
  - \* Stabilized acoustic vertical modes (Implicit Scheme)

Density Current

Large Warm & Small Cold Bubble



Schär Mountain







### GRAVITY WAVE Generation & Progagation







With ORIGINAL (t=5h)

#### GRAVITY WAVE Generation & Progagation



### 2. OCEANIC Component (MALLORCA-MENORCA Channel)

#### > Shallow-Water equations

$$\frac{\partial h}{\partial t} = -u \frac{\partial h}{\partial x} - h \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - g \frac{\partial h}{\partial x} - \frac{1}{\rho} \frac{\partial P}{\partial x} - \frac{gu^2}{hC^2}$$





Partial Dam Break 10-5 m



### LONG OCEAN WAVES (Proudman Resonance & Wave Shoaling)





## 3. COASTAL Component (CIUTADELLA Inlet)

#### > Shallow-Water equations

$$\frac{\partial h}{\partial t} = -u \frac{\partial h}{\partial x} - h \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - g \frac{\partial h}{\partial x} - \frac{g u^2}{h C^2}$$





Gaussian Bump in 10 m



## RISSAGA (Harbour Resonance)





#### RISSAGA (CATEGORIES of Practical Interest)





What fraction of the events are (are not) correctly forecast ???

What fraction of the forecasts are (are not) correct ???

- > A PRAGMATIC (and computationally CHEAP) numerical APPROACH aimed at PREDICTING the occurrence and magnitude of meteotsunamis in Ciutadella (RISSAGAS): SKILL for the recognition of RISK situations and for a categorization among WEAK, MODERATE and INTENSE
- > SOME ISSUES to explore: Sounding representativity; Type and amount of GW triggering; Inclusion of moist physics (MCS); Second-order oceanic influences...
- > The system could be applied as a DOWNSCALING METHOD to assess quantitatively the future risk of rissagas
- > It is now in operation, running daily driven by GFS forecast soundings for the next 3 days and providing PROBABILISTIC PREDICTIONS: <a href="http://meteo.uib.es/rissaga">http://meteo.uib.es/rissaga</a>

THANK YOU

for

your attention