

Model studies of heavy precipitation events in the western Mediterranean during the HyMeX campaign

Luisa Röhner | June 06, 2014

INSTITUTE FOR METEOROLOGY AND CLIMATE RESEARCH - TROPOSPHERE RESEARCH

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Scientific questions

What is the role of convection for the initiation of local HPE in the western Mediterranean?

Scientific questions

What is the role of convection for the initiation of local HPE in the western Mediterranean?

PANDOWAE=Predictability ANd Dynamics Of Weather Systems in the Atlantic-European Sector

Scientific questions

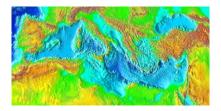
What is the role of convection for the initiation of local HPE in the western Mediterranean?

PANDOWAE=Predictability ANd Dynamics Of Weather Systems in the Atlantic-European Sector

PANDOWAE research questions:

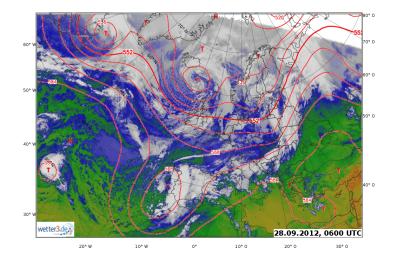
- importance of diabatic processes for errors in prediction of weather systems
- interaction between moist processes and large scale dynamics
- relevance of small-scale diabatic processes for short and medium range weather prediction
- roles of spatial and temporal scales in limiting predictability of HIW

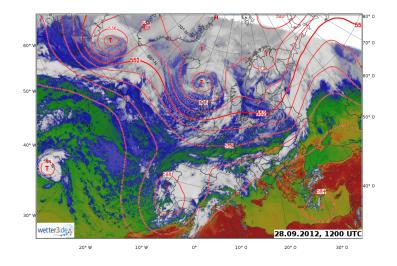
Aim: diagnostic study of heavy precipitation event

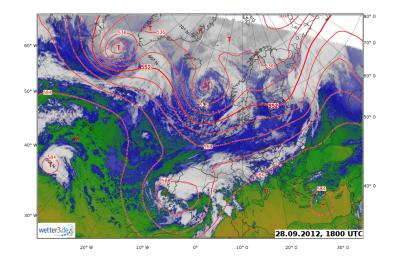

- Aim: diagnostic study of heavy precipitation event
- Preferable: case study with lots of measurement data

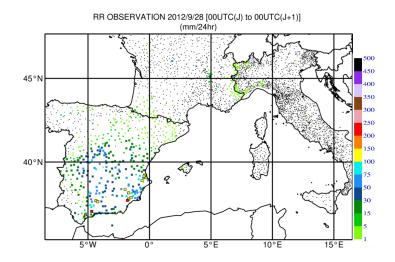
- Aim: diagnostic study of heavy precipitation event
- Preferable: case study with lots of measurement data

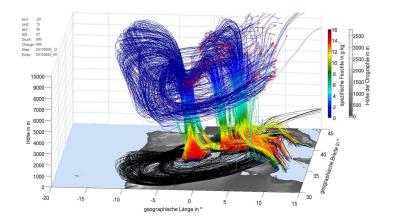
HyMeX campaign (2012):




HyMeX=Hydrological cycle in Mediterranean Experiment







36h moisture trajectories startet at 28.12.2012, 1200 UTC (by courtesy of Kai-Uwe Nerding)

 numerical simulations with the COSMO-model (COSMO=Consortium for Small-scale Modeling)

- Forecast model of the German Weather Service (DWD)
- non-hydrostatic model
- limited area model

 numerical simulations with the COSMO-model (COSMO=Consortium for Small-scale Modeling)

- Forecast model of the German Weather Service (DWD)
- non-hydrostatic model
- limited area model
- high resolution mode: horizontal resolution of 2.8 km → convection is resolved
- Iower resolution mode: horizontal resolution of 7 km
 - \rightarrow convection has to be parameterized

 numerical simulations with the COSMO-model (COSMO=Consortium for Small-scale Modeling)

- Forecast model of the German Weather Service (DWD)
- non-hydrostatic model
- limited area model
- high resolution mode: horizontal resolution of 2.8 km → convection is resolved
- Iower resolution mode: horizontal resolution of 7 km
 - \rightarrow convection has to be parameterized
- initial and boundary conditions: ECMWF analyses (horizontal resolution of 0.25°)

aims:

- good high resolution (COSMO 2.8) forecast to represent the "reality"
- Ifigure out important meteorological features of case study (mesoscale and small scale processes)

aims:

- good high resolution (COSMO 2.8) forecast to represent the "reality"
- figure out important meteorological features of case study (mesoscale and small scale processes)

approach for [1]:

 $\rightarrow\,$ high resolution COSMO simulations with different start times

aims:

- good high resolution (COSMO 2.8) forecast to represent the "reality"
- figure out important meteorological features of case study (mesoscale and small scale processes)

approach for [1]:

- ightarrow high resolution COSMO simulations with different start times
- ightarrow comparison of COSMO run with AROME-WMED reanalyses data

aims:

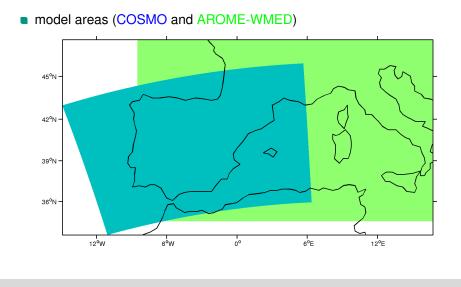
- good high resolution (COSMO 2.8) forecast to represent the "reality"
- figure out important meteorological features of case study (mesoscale and small scale processes)

approach for [1]:

- $\rightarrow\,$ high resolution COSMO simulations with different start times
- $\rightarrow\,$ comparison of COSMO run with AROME-WMED reanalyses data $\rightarrow\,$ calculation of scores:
 - BIAS
 - RMSE
 - correlation coefficient
 - threshold-based scores

- different start times:
 - 28.09.2012 0600 UTC (morning of day with HPE)
 - 28.09.2012 0000 UTC
 - 27.09.2012 1800 UTC
 - 27.12.2012 1200 UTC

different start times:

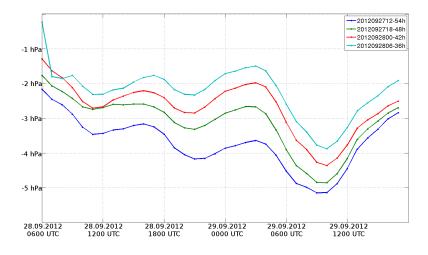

- 28.09.2012 0600 UTC (morning of day with HPE)
- 28.09.2012 0000 UTC
- 27.09.2012 1800 UTC
- 27.12.2012 1200 UTC

COSMO vs. AROME-WMED:

	COSMO-2.8	AROME-WMED reanalyses
horizontal resolution	2.8 km	2.5 km
vertical levels	50	60
initial and boundary conditions	COSMO-7 (ECMWF)	ARPEGE
assimilated data	boundary conditions: ECMWF	several HyMeX mea- surement data

COSMO vs. AROME-WMED

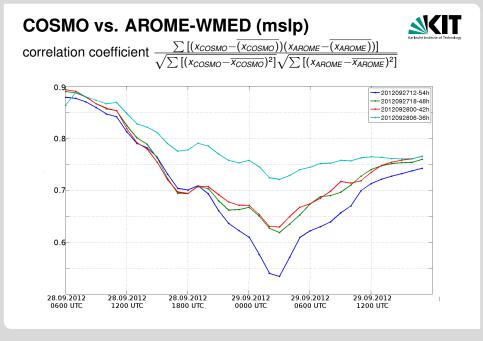
COSMO vs. AROME-WMED (mslp)



BIAS $\frac{1}{N} \sum (x_{COSMO} - x_{AROME})$

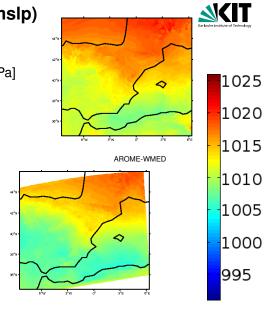
COSMO vs. AROME-WMED (mslp)

BIAS $\frac{1}{N} \sum (x_{COSMO} - x_{AROME})$



Luisa Röhner - Model studies of HPE in the western Mediterranean

COSMO vs. AROME-WMED (mslp)



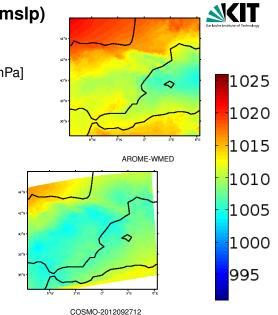
 $\text{correlation coefficient } \frac{\sum [(x_{COSMO} - \overline{(x_{COSMO})})(x_{AROME} - \overline{(x_{AROME})})]}{\sqrt{\sum [(x_{COSMO} - \overline{x_{COSMO}})^2]} \sqrt{\sum [(x_{AROME} - \overline{x_{AROME}})^2]} }$

mean sea level pressure [hPa] 28 September 2012 0700 UTC

COSMO-2012092712

COSMO-2012092806

0

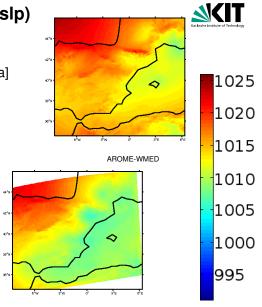

44°N

42%

36%

mean sea level pressure [hPa] 29 September 2012 0300 UTC

0


COSMO-2012092806

44°N

42° 40°

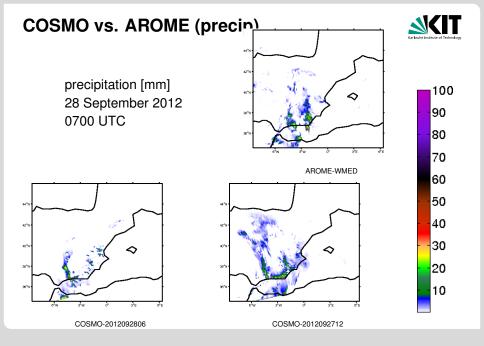
36°N

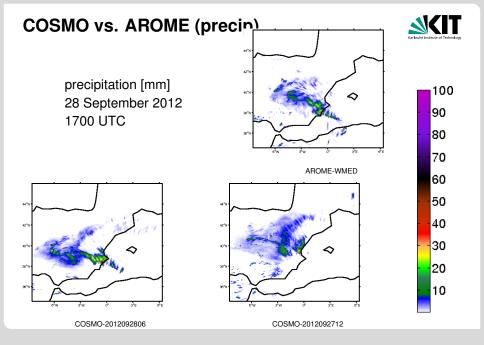
mean sea level pressure [hPa] 29 September 2012 1700 UTC

COSMO-2012092712

COSMO-2012092806

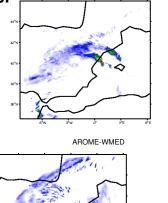
0


44°N


42°0

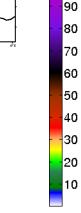
36%

COSMO vs. AROME (precip)



100

precipitation [mm] 29 September 2012 0300 UTC



44°

42°)

40°1 38°1

36°1

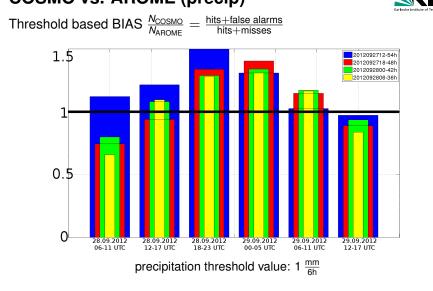
COSMO-2012092712

COSMO-2012092806

Contingency table

Contingency table

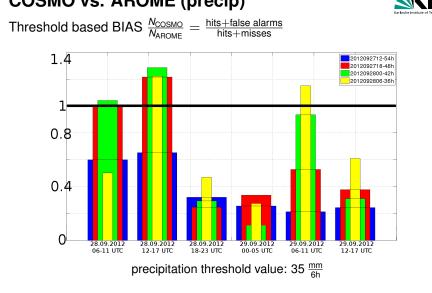
	Obs. YES	Obs. NO
Fcst. YES	Hit	False alarm
Fcst. NO	Miss	Correct negative



	Obs. YES	Obs. NO
Fcst. YES	Hit	False alarm
Fcst. NO	Miss	Correct negative

for each "event" (e.g. threshold value of precipitation is exceeded) \rightarrow contingency table is created

Threshold based BIAS $\frac{N_{\rm COSMO}}{N_{\rm AROME}} = \frac{\rm hits+false alarms}{\rm hits+misses}$



Threshold based BIAS $\frac{N_{\text{COSMO}}}{N_{\text{AROME}}} = \frac{\text{hits} + \text{false alarms}}{\text{hits} + \text{misses}}$ 1.82012092712-54 2012092718-48h 2012092800-42 2012092806-36h 1.20.6 0 28.09.2012 28.09.2012 28.09.2012 29.09.2012 29.09.2012 29.09.2012 06-11 UTC 12-17 UTC 18-23 UTC 00-05 UTC 06-11 UTC 12-17 UTC precipitation threshold value: 10 mm/6h

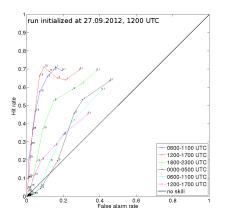
COSMO vs. AROME (precip)

ROC-curve POD POFD

ROC-curve POD POFD

with POD = $\frac{hits}{hits + misses}$ and POFD = $\frac{false alarms}{correct negatives + false alarms}$

ROC-curve POD POFD



ROC-curve POD POFD

threshold values (mm/6h): 0.1 - 1 - 2 - 5 - 10 - 15 - 25 - 35 - 50

run initialized at 27.09.2012, 1200 UTC

ROC-curve POD

COSMO vs. AROME (precip)

threshold values (mm/6h): 0.1 - 1 - 2 - 5 - 10 - 15 - 25 - 35 - 50

High resolution runs

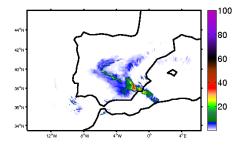
aim:

- Ind good high resolution (COSMO 2.8) forecast to represent the "reality" → last initialized COSMO run
- Ifigure out important meteorological features of case study (mesoscale and small scale processes)

High resolution runs

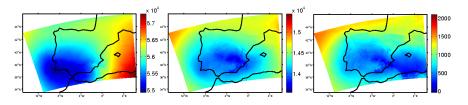
aim:

- Ind good high resolution (COSMO 2.8) forecast to represent the "reality" → last initialized COSMO run
- (a) figure out important meteorological features of case study (mesoscale and small scale processes)

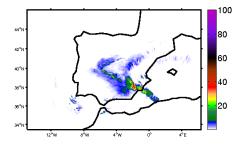

approach for [2]:

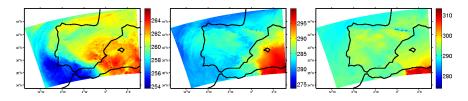
- $\rightarrow\,$ investigation of chosen COSMO simulation $\rightarrow\,$ meteorological variables:
 - equivalent potential temperature
 - precipitable water
 - PV
 - convective indices

… ?

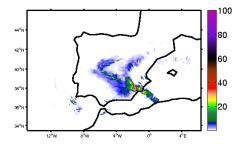


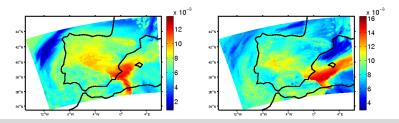
 $\begin{array}{l} \mbox{precipitation [mm]} \leftrightarrow \\ \mbox{geopotential [m^2 \, s^{-2}]} \end{array}$

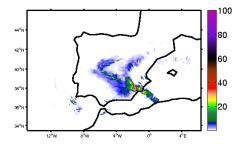

500 hPa

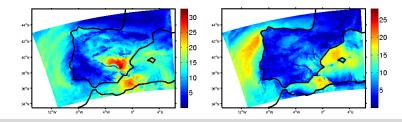


 $\begin{array}{l} \text{precipitation [mm]} \leftrightarrow \\ \text{temperature [K]} \end{array}$


500 hPa




precipitation [mm] \leftrightarrow specific humidity [kg kg⁻¹]



precipitation [mm] \leftrightarrow horizontal wind [m s⁻¹]

850 hPa

aims:

- What is the role of convection for the initiation of local HPE in the western Mediterranean?
- Is it possible to reproduce natural variability of convective clouds?

aims:

- What is the role of convection for the initiation of local HPE in the western Mediterranean?
- Is it possible to reproduce natural variability of convective clouds?

approach:

- ensemble with stochastic cumulus convection scheme (various cloud distributions on grid scale)
- 2 validation by ensemble scores

Stochastic cumulus convection scheme

Stochastic cumulus convection scheme

	Tiedtke (operational)	Plant-Craig
type of parameterization	mass flux	mass flux
closure assumption	moisture convergence	CAPE
stochastic feature	no (deterministic)	in each gridbox, a random number of clouds (with indi- vidual mass flux) is initiated
variability regarding distri- bution of convective precip- itation	small	large
	• • • •	
		• . •

20/23

2 validation of ensemble runs

validation of ensemble runs

- "Structure-Amplitude-Location (SAL)" (Wernli et al., 2008)
- "Displacement and Amplitude Score (DAS)" (Keil and Craig, 2009)
- "Method for Object-based Diagnostic Evaluation (MODE)" (Brown et al., 2004 and Davis et al., 2006)

validation of ensemble runs

- "Structure-Amplitude-Location (SAL)" (Wernli et al., 2008)
- "Displacement and Amplitude Score (DAS)" (Keil and Craig, 2009)
- "Method for Object-based Diagnostic Evaluation (MODE)" (Brown et al., 2004 and Davis et al., 2006)
- $\rightarrow\,$ iterative changing of parameters in Plant-Craig convection scheme $\rightarrow\,$ re-calculation of scores

Model studies of heavy precipitation events in the western Mediterranean during the HyMeX campaign

Model studies of heavy precipitation events in the western Mediterranean during the HyMeX campaign

high resolution COSMO simulations (2.8 km):

- changing forecast start time: best control run to represent reality
- validation with AROME-WMED analyses by different statistical scores

Model studies of heavy precipitation events in the western Mediterranean during the HyMeX campaign

high resolution COSMO simulations (2.8 km):

- changing forecast start time: best control run to represent reality
- validation with AROME-WMED analyses by different statistical scores
- simulation with parameterization of convection (7 km):
 - validation by different statistical ensemble scores
 - changing of parameters in Plant-Craig convection scheme

Thank you for your attention!

Luisa Röhner - Model studies of HPE in the western Mediterranean